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ABSTRACT
This paper presents a parallel version of RnaPredict, a ge-
netic algorithm (GA) for RNA secondary structure predic-
tion. The research presented here builds on previous work
and examines the impact of three different pseudorandom
number generators (PRNGs) on the GA’s performance. The
three generators tested are the C standard library PRNG
RAND, a parallelized multiplicative congruential generator
(MCG), and a parallelized Mersenne Twister (MT). A fully
parallel version of RnaPredict using the Message Passing
Interface (MPI) was implemented. The PRNG comparison
tests were performed with known structures that are 118,
122, 543, and 556 nucleotides in length. The effects of the
PRNGs are investigated and the predicted structures are
compared to known structures.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Biology and genetics;
D.1.3 [Programming Techniques]: Parallel programming;
G.3 [Probability and Statistics]: Random number gen-
eration

General Terms
Algorithms, Performance

Keywords
Bioinformatics, RNA Secondary Structure Prediction, Par-
allel Evolutionary Algorithms, Random Number Generators

1. INTRODUCTION
The basic function of a biomolecule is determined by its

3-dimensional shape, otherwise known as the tertiary struc-
ture. However, existing empirical methods to determine this
shape are too costly and lengthy to be practical. RNA is
of interest as a biomolecule because it is central in several
stages of protein synthesis. Also, its secondary structure
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dominates its tertiary structure. In our model, RNA sec-
ondary structure develops as a consequence of bonds which
form between specific pairs of nucleotides known as the canon-
ical base pairs. Searching a sequence of nucleotides for all
possible base pairs is rapid and straightforward; the chal-
lenge comes from attempting to predict which specific canon-
ical base pairs will form bonds in the real structure. Vari-
ous algorithms have been used for RNA structure prediction
such as dynamic programming, comparative methods, and
stochastic methods such as genetic algorithms (GAs).

The fitness metric employed to guide a given GA through
the search space of possible base pairs is energy minimiza-
tion. As an RNA molecule will fold into a structure with
near minimal free energy (∆G), the GA attempts to find
the structure resulting in the lowest energy possible.

Coarse-grained distributed GAs [1] offer a number of ad-
vantages beyond the benefits of parallelization. These in-
clude the prevention of premature convergence by maintain-
ing diversity, an increase of the selection pressure within the
entire population, and also a reduction of the time to con-
vergence.

This work builds on [5] and presents P-RnaPredict, a fully
parallelized distributed GA to predict RNA secondary struc-
ture; it is based on the MPI standard to run on a 128 node
Beowulf cluster. In our parallel GA, random numbers are
used to make coarse-grained decisions in population initial-
ization, selection, crossover, mutation, and migration. Dur-
ing development of P-RnaPredict, three major PRNG issues
arose. The first was the dramatic increase in random number
consumption as the RNA sequences increased in length. The
second was that the standard development library PRNG
functions are not designed for parallel usage. Third, we
average our results over 30 randomly seeded runs. This im-
plicitly assumes that the random numbers generated for each
run are independent of each other. This compelled our in-
vestigation into the impact of PRNGs on GAs in general,
and P-RnaPredict in particular.

Although there appears to be very little in the literature
regarding parallel GAs and PRNGs, a series of empirical
studies [6] were done on how serial GA performance is im-
pacted by PRNGs. These studies indicated that PRNG
quality had no statistically significant effect on GA perfor-
mance. However, GA performance could vary depending on
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the PRNG and test function chosen, and in isolated cases
poor PRNGs could result in slightly better GA performance.

An “ablation” study in 2002 by Cantù-Paz [2] found that
the PRNG used to initialize the random population is crit-
ical, whilst the other GA components were relatively unaf-
fected. This is especially significant in a multi-population
GA like ours, as any overlap in the PRNG period during
population initialization could result in duplicate individu-
als. This in turn could result in diminished GA performance.

Based on these observations, two parallel PRNGs were
selected for evaluation in the parallel GA implementation.
The first was the parallel MT, named “Dynamic Creation”
(DC). The second was a parallelized version of a Multiplica-
tive Congruential Generator (MCG). The MCG’s parame-
ters were m=231-1, c=0, and a=6208991 as suggested by [3].
This MCG was parallelized by the leap-frog method [4], and
was deliberately chosen to have a lower quality and shorter
period than the DC. We also employed the original serial
GA as a control, which used the standard C library PRNG
RAND.

Selection of test parameters were based on previously pub-
lished experimental results [7], and were as follows: The
crossover probability (Pc) was set to 0.7, while the mutation
probability (Pm) varied as either 0.25 or 0.8. The selection
technique employed was standard roulette wheel selection
(STDS), with 1-Elitism. The chosen thermodynamic model
was INN-HB and crossover was CX. The global population
of 700 was split into two separate sets of deme sizes and deme
counts: (50, 14), and (70, 10) respectively. The migration
interval was fixed at 20 generations, and the migration rate
was fixed at 10 percent. Finally, the topology was fully con-
nected, and the migration policy was set to “best replace
worst.” Each parameter set was repeated with 30 random
seeds and the results averaged.

Four RNA sequences were taken as test data from the
Comparative RNA Web Site; they were chosen to provide a
good variety of sequence lengths and a variety of organisms.
Each sequence chosen had a known structure available for
comparison, determined by comparative methods. The four
sequences used were a 556 nucleotide (nt) Acanthamoeba
griffini sequence, a 543 nt Hildenbrandia rubra sequence,
a 118 nt Saccharomyces cerevisiae sequence, and a 122 nt
Haloarcula marismortui sequence. Only the A.griffini re-
sults are shown here.

2. RESULTS
Table 1 presents the Acanthamoeba griffini results; it indi-

cates that the MCG PRNG performed best in two of the pa-
rameter sets based on average ∆G, with the DC and RAND
PRNGs performing best in one parameter set each. Over-
all, the MCG PRNG reached the best average ∆G at -190.79
kcal/mol with the following parameters: a Deme Size of 70,
a Deme Count of 10, and a Pm of 0.8. Averaged over 30 runs,
the DC PRNG found the highest percentage of base pairs
matching the known structure at 32.34%. The best overall
structure was found with 64.88% matching base pairs with
the following parameters: a MCG PRNG, a Deme Size of
70, a Deme Count of 10, and a Pm of 0.8.

3. CONCLUSIONS
The results from the four sequences indicate that PRNG

quality does not have a significant effect on GA performance,

Table 1: P-RnaPredict results using three different
PRNGs on the A.griffini sequence

Avg. Best
Base Base

Deme Deme Avg. Pair Pair
Size Pm Count PRNG ∆G % %
70 0.25 10 DC -187.58 28.39 58.77
70 0.25 10 MCG -187.29 30.35 56.48
70 0.25 10 RAND -186.35 27.04 46.56

70 0.8 10 MCG -190.79 29.79 64.88
70 0.8 10 DC -189.35 29.26 60.30
70 0.8 10 RAND -187.8 28.39 60.30

50 0.25 14 RAND -186.51 26.89 52.67
50 0.25 14 DC -184.74 32.34 58.01
50 0.25 14 MCG -184.43 28.04 48.09

50 0.8 14 MCG -188.85 31.67 54.96
50 0.8 14 DC -188.29 26.92 48.85
50 0.8 14 RAND -185.27 27.17 47.32

which is in keeping with the previous research on serial GAs
and PRNGs. However, the serial version of RAND consis-
tently underperformed and it cannot easily be parallelized.
For a truly parallel implementation such as P-RnaPredict,
other PRNGs such as MCG and DC need to be used. Over-
all, prediction accuracy is very good, particularly so for
shorter sequences. Further improvements are expected from
modelling non-canonical base pairs.
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[2] E. Cantù-Paz. On random numbers and the performance of
genetic algorithms. In W. B. Langdon, E. Cantú-Paz,
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